

Nitrogen determination in silicon nitride

Suitable analyzers

- ELEMENTRAC ONH-p
- ELEMENTRAC ON-p

Used accessories

- Graphite crucibles (90180 and 90185)
- Nickel capsule, pressed (88400-0066)
- Suitable calibration material (NIST or other)
- Graphite powder (90800)

Application Settings

I) General

Furnace mode: on Standby flow: 0

Furnace cooling: $35 / 45 \,^{\circ}\text{C}$ A flow of 10 l/h could improve precision

when there is a long time span between

two measurements

II) Outgassing and stabilizing

Setting / Phase	Time [sec]	Power [W]	Flow [l/h]
Outgassing (1. cycle)	20	0	27
Outgassing (2. cycle)	30	5800	27
Stabilizing	75	5800	27

III) Analysis

Power duration: 80 sec Drift compensation: on Power: 5800 W Open furnace: yes

Flow: 27 l/h

Channel	Minimum time [sec]		Integration delay [sec]	
High N	35	80	10	0.3

Nitrogen determination in silicon nitride

IV) Post waiting

Post waiting time: 20 sec Granulate mode: off

Sample preparation

Make sure that the sample has a good homogeneity and is dry. Drying one hour at 105°C maybe suitable.

Procedure

- Prepare ELTRA analyzer (e.g. exchange anhydrone and/or sodium hydroxide if necessary); clean the furnace, sample drop mechanism, electrode tip (if necessary)
- Run three blanks with empty crucibles
- Calibrate the analyzer with suitable calibration material (NIST or other)
 - (1) Fill the inner crucible (90180) with a small amount of approx. 30 mg graphite (90800), put the inner crucible in the outer crucible (90185) and place them on the electrode tip. Close furnace.
 - (2) Weigh calibration material and place it in a nickel capsule (88400-0066) and seal it; place the nickel capsule with the sample in the sample drop mechanism and start analysis
 - (3) After analysis give the inner crucible into waste and fill in a new one. The outer crucibles can be used approximately 10 times.

Repeat steps (1) - (3) at least three times; Mark the results and use the calibration function in the software.

→ Now start with the actual analysis.

Typical results					
ERM ED 101 ¹⁾					
Id	Weight (mg)	Nitrogen (%)			
ERM ED 101	8.98	37.86			
ERM ED 101	10.16	38.20			
ERM ED 101	10.53	37.94			
ERM ED 101	10	38.25			
ERM ED 101	10.35	38.17			
ERM ED 101	10.36	38.21			
ERM ED 101	12.08	38.37			
ERM ED 101	9.96	38.20			
ERM ED 101	9.89	37.80			
ERM ED 101	10.5	38.33			
Mean value					
		38.13			
Deviation / Rel. deviation					
		0.19 / 0.51			

 $^{1)}$ certified value: N 38.1 \pm 0.2